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a b s t r a c t

By studying the structure of the discrete kernel of the linear acoustic operator discretized
with a Godunov scheme, we clearly explain why the behaviour of the Godunov scheme
applied to the linear wave equation deeply depends on the space dimension and, espe-
cially, on the type of mesh. This approach allows us to explain why, in the periodic case,
the Godunov scheme applied to the resolution of the compressible Euler or Navier–Stokes
system is accurate at low Mach number when the mesh is triangular or tetrahedral and is
not accurate when the mesh is a 2D (or 3D) cartesian mesh. This approach confirms also
the fact that a Godunov scheme remains accurate when it is modified by simply centering
the discretization of the pressure gradient.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In this work, we consider Godunov type schemes applied to the linear wave equation and discuss their accuracy at low
Mach number, with a particular focus on the geometry (rectangular or triangular) of the underlying discretization cells. Our
study was motivated by the following three facts:

1. It has long been recognized that such conservative finite-volume type schemes, like for example the Roe scheme [1] or the
VFRoe scheme [2,3], are well adapted to capture shock wave solutions of the compressible Euler system but fail to cor-
rectly solve low Mach number flows. Indeed, it has been observed that when the Mach number goes to zero, Godunov
type schemes create spurious pressure waves that prevent the discrete solution to be close to a discrete incompressible
flow. This inaccuracy has been explained in [10,11] with formal non-linear arguments. To cure this inaccuracy, Roe type
schemes modified with a Turkel’s preconditioning matrix are proposed in [10–12].

2. However, it has been noticed in [21,22] that the Roe scheme remains fairly accurate on triangular meshes, and, on a very
particular triangular mesh, this has been explained by graph theory arguments, still in the non-linear setting.

3. While the above-cited explanations invoked non-linear arguments, the recent work [9] has shown that this was not nec-
essary. Indeed, at low Mach number, [9] identifies a possible source of inaccuracy generated by the Godunov scheme
applied to the linear wave equation on rectangular meshes. It shows that an energy transfer occurs from the incompress-
ible mode to the acoustic one, that drives the latter far away from the exact acoustic mode. Moreover, [9] has proposed a
cure to this problem which consists in simply centering the discretization of the pressure gradient. The resulting new
. All rights reserved.
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schemes have been named low Mach X schemes with X being any Godunov type scheme (e.g. X = Roe or X = VFRoe). Let us
note that this simple modification can also be applied to any colocated X scheme that is not of Godunov type (e.g. X =
kinetic scheme [25]). Moreover, it is shown in [9] that other colocated schemes that are accurate at low Mach number
[10–12,14–19] actually center or tend to center the pressure gradient when the Mach number tends to zero. Nevertheless,
the theory developed in [9] is based on the notion of first-order modified equation which is valid on cartesian meshes but
hardly generalizable to triangular meshes, and, thus, does not help in the analysis of the influence of the cell geometry on
the accuracy of the scheme.

Motivated by the above three points, we have developped a theory that explains (and gives a precise meaning to) the
inaccuracy at low Mach number of the Godunov scheme on cartesian meshes, the accuracy of that scheme on triangular
meshes and the accuracy of the low Mach Godunov scheme on cartesian and triangular meshes. This theory is based on
the analysis of the stationary spaces of the schemes applied to the linear wave equation and on the rate of diffusion of
any numerical solution towards these spaces. For the sake of completeness, we show that our theoretical point of view also
explains the accuracy of the well-known MAC scheme [26] on cartesian meshes.

Our results may be summarized as follows. Firstly, the stationary space of the Godunov scheme on rectangular cartesian
meshes is a very poor subspace, unable to approach well the continuous incompressible velocity fields. Secondly, in the low
Mach regime, the numerical diffusion inherent to this scheme is strong. These two facts imply that, in general, the time evo-
lution of an initial discrete incompressible velocity field with constant pressure contains spurious acoustic modes that ap-
pear within an acoustic time scale. On the contrary, the stationary spaces of the Godunov scheme on triangular meshes, of
the low Mach Godunov scheme on cartesian and triangular meshes and of the MAC scheme on cartesian meshes are rich en-
ough to approach well incompressible modes and, thus, prevent the creation of spurious modes. Let us underline that a gen-
eralization of the results of [21,22] was also proposed in [13] with a formal asymptotic analysis based on powers of the Mach
number. Nevertheless, this approach based on a formal asymptotic analysis, which is also used for example in [10,22], seems
to us incomplete because it does not take into account the structure of the above-mentioned stationary spaces.

The outline of this article is the following. In Section 2, we recall basic results about the linear wave equation. In Section 3,
we present the schemes and give a numerical illustration of their respective behaviours on a low Mach application. In Sec-
tion 4, we recall the notion of first-order modified equation in the case of the linear wave equation solved with a Godunov
scheme, we summarize some results proposed in [9], we describe the structure of the stationary space associated with this
first-order modified equation and the time behaviour of the solution of this equation. In Section 5, we describe the stationary
space and the time behaviour of the Godunov and low Mach Godunov scheme when the mesh is triangular or cartesian. In
Section 6, we show that our point of view is compatible with the fact that a staggered scheme of MAC type [26] applied
to the compressible Euler or Navier–Stokes system remains accurate at low Mach number. In Section 7, we show the con-
nections of our theory with the approach based on a formal asymptotic analysis of the Godunov scheme [10,13,21,22]. At
last, we conclude the paper in Section 8.

2. Basic results about the linear wave equation

Let us consider the (periodic) torus in Rdðd 2 f1;2;3gÞ noted Td :¼ ½a1; b1� � � � � � ½ad; bd� and the Hilbert space

ðL2ðTdÞÞ1þd :¼ q :¼ r
u

� �
such that

R
Td r2dxþ

R
Td juj2dx < þ1

� �
equipped with the classical inner product

hq1; q2i ¼
R

Td q1 � q2dx and with the associated norm kqk :¼ hq; qi1=2, the associated energy E being equal to kqk2. Let us con-
sider the linear wave equation
@tqþ
L
M

q ¼ 0;

qðt ¼ 0; xÞ ¼ q0ðxÞ;

8<
: ð1Þ
where
Lq ¼ a�ðr � u;rrÞT ; ð2Þ
and u ¼ ðu;vÞT . The quantity a� is a strictly positive constant of order 1 and M � 1 (M is the Mach number and a�=M is the
sound velocity). The linear wave equation (1) corresponds to the linearized compressible Euler system without convection
operator. The quantity r(t,x) is a scaled pressure perturbation related to the pressure p(t,x) through the relation
pðt; xÞ :¼ p� þ
M
a�

rðt; xÞ ð3Þ
(p� is a positive constant of order 1). Let us underline that we solve linear wave equation (1) on the periodic torus Td – which
is equivalent to apply periodic boundary conditions – in order to lead a discussion that will not depend on the boundaries.
Since hq; Lqi ¼ 0 for any q, the following well-known lemma expresses energy conservation of the wave equation:
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Lemma 2.1. The solution q of (1) is such that kqkðt P 0Þ ¼ kq0k.

Let us now define the following subspaces of ðL2ðTdÞÞ1þd
E ¼ q :¼ r
u

� �
2 ðL2ðTdÞÞ1þd such that rr ¼ 0 and r � u ¼ 0

� �
; ðaÞ

¼ q :¼ r
u

� �
2 ðL2ðTdÞÞ1þd

; 9ða; b; c;wð�ÞÞ 2 R3 � H1ðTdÞ such that r ¼ c and u ¼ a
b

� �
þr� w

� �
; ðbÞ

E? ¼ q :¼ r
u

� �
2 ðL2ðTdÞÞ1þd such that

R
Td rdx ¼ 0 and 9/ð�Þ 2 H1ðTdÞ;u ¼ r/

� �
: ðcÞ

8>>>>>><
>>>>>>:

ð4Þ

In other words, E is the subspace of constant scaled pressure perturbations and incompressible velocity fields. This subset is
also called well-prepared subspace for a reason that will be written at the end of this section. It is well-known that ðL2ðTdÞÞ1þd

may be decomposed in the following way:

Lemma 2.2
E � E? ¼ ðL2ðTdÞÞ1þd and E ? E?:
In other words, any q 2 ðL2ðTdÞÞ1þd can be decomposed into
q ¼ q̂þ q? where ðq̂; q?Þ 2 E � E?; ð5Þ
and this decomposition – named Hodge decomposition – is unique.

In the sequel, we define the Hodge projection P with Pq :¼ q̂. One essential point in what follows is that
E ¼ KerL
and that, as a consequence of the linearity of L, the solution qðt; xÞ of (1) may be decomposed as
qðt; xÞ ¼ Pq0ðxÞ þ ~qðt; xÞ; ð6Þ
where Pq0 is the Hodge projection of q0 and ~q is the solution of
@t~qþ
L
M

~q ¼ 0;

~qðt ¼ 0; xÞ ¼ ðq0 � Pq0ÞðxÞ:

8<
: ð7Þ
Moreover, ~qðt; �Þ belongs to E? for all t P 0, and, by energy Lemma 2.1, k~qkðtÞ ¼ kq� Pqkðt ¼ 0Þ. Thus, if in linear wave equa-
tion (1), the initial condition is well-prepared in the sense of
kq� Pqkðt ¼ 0Þ ¼ OðMÞ; ð8Þ

~qðt; xÞ remains a perturbation of order OðMÞ at any time t > 0 that is to say
kq� Pqkðt ¼ 0Þ ¼ OðMÞ ) kq� Pqkðt P 0Þ ¼ OðMÞ: ð9Þ

This corresponds to a simplified version of a result by Schochet obtained in the non-linear case [20]. The fact that a given
numerical scheme mimics property (9) or, on the contrary, is such that
9q0 2 ðL2ðTdÞÞ1þd : kq� Pqkðt ¼ 0Þ ¼ OðMÞ and kq� PqkðsacÞ 	 OðMÞ ð10Þ

(where sac is an acoustic time scale of order M) determines the way it approaches solution of (1) at low Mach number. Rela-
tion (10) characterizes the existence of spurious acoustic waves. Definition (8) of well-prepared initial condition explains why
the subspace E is also called well-prepared subspace (it is also called incompressible subspace). Moreover, the fact that E is the
kernel of the acoustic operator explains why the subspace E? is called acoustic subspace, ~qðt; xÞ being a non-stationary acous-
tic wave when ð1� PÞq0 – 0. Let us underline that a standard asymptotic analysis applied to the full non-linear compressible
Euler system in powers of M yields that pressure field pðt; xÞ is the sum of a constant p� of order 1 in space and time up to a
perturbation of order M2, and that the velocity field uðt; xÞ is the sum of an incompressible divergence-free field ûðt; xÞ plus
an acoustic perturbation of order M when the initial condition is well-prepared in the sense (see for example [9] for details)
pðt ¼ 0; xÞ ¼ p� þ OðM
2ÞðxÞ;

uðt ¼ 0; xÞ ¼ û0ðxÞ þ OðMÞðxÞ;

(
with

p� ¼ Cst
p ;

r � û0 ¼ 0

(
ð11Þ
(Cst
p is a positive constant of order 1; kû0k is also of order 1). Since rðt; xÞ and pðt; xÞ are linked through relation (3), we see that

(8) and (11) are formally equivalent. In the same way, we easily verify that (10) – which characterizes the existence of spu-
rious acoustic waves – is formally equivalent to
pðsac; xÞ ¼ p� þ OðMÞðxÞ;
uðsac; xÞ ¼ ûðsac; xÞ þ u?ðsac; xÞ;

�
with

p� ¼ Cst
p ;

r � û ¼ 0 and ku?k ¼ Oð1Þ:

(
ð12Þ



5318 S. Dellacherie et al. / Journal of Computational Physics 229 (2010) 5315–5338
3. The numerical schemes and their behaviours on a low Mach application

We now study with numerical experiments if (9) or (10) is verified at the discrete level when linear wave equation (1) is
discretized with the Godunov scheme, with the low Mach Godunov scheme proposed in [9] and with the MAC scheme [26].
We recall that we apply to linear wave equation (1) periodic boundary conditions in order to lead a discussion that will not
depend on the boundaries. Before showing numerical results, we firstly recall the derivation of these three schemes and, sec-
ondly, we construct a discrete version of the well-prepared subspace E (defined with (4)(b) in the continuous case) when the
mesh is a colocated triangular mesh, a colocated cartesian mesh and a staggered cartesian mesh.

In the case of the cell-centered Godunov scheme or low Mach Godunov scheme, the computational domain is discretized by
cells Ti which are triangular or quadrangular. Let Aij be the common edge of two neighboring cells Ti and Tj, and nij the nor-
mal unit vector to Aij pointing from Ti to Tj (note that nij ¼ �njiÞ. We shall denote by jTij the area of Ti and jAijj the length of
Aij. In the case of the staggered MAC scheme, the computational domain is discretized with quadrangular cells in such a way
the discrete velocity field u :¼ ðu;vÞT is defined at the cell interface ðiþ 1=2; jÞ for u and at the cell interface ði; jþ 1=2Þ for v,
the scaled pressure r being defined at the center of the quadrangular cell (i,j). Thus, in the case of the MAC scheme, the dis-
crete field is defined on a staggered cartesian mesh which is not the case for Godunov type schemes that are colocated
schemes. In each case, the time interval of the simulation is divided into time steps Dt and n is the time subscript.
3.1. The Godunov scheme

System (1) may be written under the following form
@tqþ @xðAxqÞ þ @yðAyqÞ ¼ 0; ð13Þ
with
q ¼
r

u

v

0
B@

1
CA; Ax ¼

a�
M

0 1 0
1 0 0
0 0 0

0
B@

1
CA and Ay ¼

a�
M

0 0 1
0 0 0
1 0 0

0
B@

1
CA:
The one-dimensional Riemann problem associated to this equation is
@tqþ @nðAnðnÞqÞ ¼ 0;

qðt ¼ 0; nÞ ¼ qL if n < 0;
qR if n > 0;

�
8><
>: ð14Þ
with
AnðnÞ ¼
a�
M

0 nx ny

nx 0 0
ny 0 0

0
B@

1
CA:
The eigenvalues k and associated eigenvectors ðrk;uk;vkÞT of An verify
nx
a�
M

rk ¼ kuk; ny
a�
M

rk ¼ kvk and nxuk þ nyvk ¼
M
a�

krk:
Since n2
x þ n2

y ¼ 1, the above equations imply that
a�
M

rk ¼ kðnxuk þ nyvkÞ ¼
M
a�

k2rk:
Therefore, rk ¼ 0 or k ¼ 
 a�
M. If rk ¼ 0, since uk and vk cannot vanish at the same time, we necessarily have k ¼ 0 which im-

plies nxuk þ nyvk ¼ 0. An associated unit eigenvector is therefore
ðr0; u0;v0ÞT ¼ ð0;�ny; nxÞT :
If k ¼ � a�
M, then an associated unit eigenvector is
r�a�
M
;u�a�

M
;v�a�

M

� �T
¼ cð1;�nx;�nyÞ;
with c2 ¼ 1
2. On the other hand, if k ¼ a�

M, then an associated unit eigenvector is
ra�
M
;ua�

M
;v a�

M

� �T
¼ cð1; nx;nyÞT :
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Now, let P be the eigenvector matrix
P :¼
0 c c
�ny �cnx cnx

nx �cny cny

0
B@

1
CA:
There holds
P�1 ¼
0 �ny nx

ð2cÞ�1 �ð2cÞ�1nx �ð2cÞ�1ny

ð2cÞ�1 ð2cÞ�1nx ð2cÞ�1ny

0
B@

1
CA:
Then, it can be checked that
K :¼ P�1AnP ¼ a�
M

0 0 0
0 �1 0
0 0 1

0
B@

1
CA:
Then, setting w :¼ ðw1;w2;w3ÞT ¼ P�1q, system (14) may be rewritten as
@twþ @nðKwÞ ¼ 0;

wðt ¼ 0; nÞ ¼ wL if n < 0;
wR if n > 0:

�
8><
>: ð15Þ
Now, the solution of (15) is obvious since K is diagonal. It is given by
wRP :¼ wðt; n ¼ 0Þ ¼ ð�w1;wR
2;w

L
3Þ

T
;

where we shall see that the exact value of �w1 as a combination of wR
1 and wL

1 does not play any role in the final expression of
the scheme. The expression of wRP in terms of qL and qR is
wRP ¼
�ny�uþ nx �v

�ð2cÞ�1 nxuR þ nyvR � rR
� 	

ð2cÞ�1 nxuL þ nyvL þ rL
� 	

0
B@

1
CA:
Therefore, the solution qRP :¼ qðt; n ¼ 0Þ is expressed by
qRP ¼

1
2 ðuL � uRÞ � nþ ðrL þ rRÞ



n2
y �u� nynx �v þ nx

2 ðuL þ uRÞ � nþ ðrL � rRÞ

 �

�nynx�uþ n2
x �v þ ny

2 ðuL þ uRÞ � nþ ðrL � rRÞ

 �

0
B@

1
CA:
Finally, integrating (13) over the space–time domain Ti � ½tn; tnþ1� and applying the Gauss law yields
qnþ1
i � qn

i þ
Dt
jTij

X
Aij�@Ti

jAijjAnðnijÞqnþ1=2
ij ¼ 0;
where qn
i is the averaged value of q over Ti at time tn and qnþ1=2

ij is the average value of q over Aij � ½tn; tnþ1�. In the numerical
approximation, this (unknown) value of qnþ1=2

ij is replaced by qRP with qL ¼ qn
i and qR ¼ qn

j . With the fact that
AnðnijÞqRP ¼ a�
2M

ðuL þ uRÞ � nþ ðrL � rRÞ
nx ðuL � uRÞ � nþ ðrL þ rRÞ



ny ðuL � uRÞ � nþ ðrL þ rRÞ



0
B@

1
CA;
there finally holds
rnþ1
i � rn

i þ
a�Dt

2MjTij
X

Aij�@Ti

jAijj ðun
i þ un

j Þ � nij þ ðrn
i � rn

j Þ
h i

¼ 0; ðaÞ

unþ1
i � un

i þ
a�Dt

2MjTij
X

Aij�@Ti

jAijj ðrn
i þ rn

j Þ þ ðun
i � un

j Þ � nij

h i
nij ¼ 0: ðbÞ

8>>>><
>>>>:

ð16Þ
3.2. The low Mach Godunov scheme

The low Mach Godunov scheme [9] is deduced from Godunov scheme (16) by simply centering the pressure gradient. Thus,
it is defined with
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rnþ1
i � rn

i þ
a�Dt

2MjTij
X

Aij�@Ti

jAijj ðun
i þ un

j Þ � nij þ ðrn
i � rn

j Þ
h i

¼ 0; ðaÞ

unþ1
i � un

i þ
a�Dt

2MjTij
X

Aij�@Ti

jAijjðrn
i þ rn

j Þnij ¼ 0: ðbÞ

8>>>><
>>>>:

ð17Þ
In [9], a 1D Fourier analysis shows that (17) satisfies the von Neumann necessary condition for L2 stability under a classical
Courant–Friedrich–Levy (CFL) criterion.

3.3. The MAC scheme

The explicit MAC scheme applied to linear wave equation (1) is given by [27]
rnþ1
i;j � rn

i;j þ
a�Dt

M
uiþ1=2;j � ui�1=2;j

Dx
þ v i;jþ1=2 � v i;j�1=2

Dy

� �
¼ 0;

unþ1
iþ1=2;j � un

iþ1=2;j þ
a�Dt

M
� riþ1;j � ri;j

Dx
¼ 0;

vnþ1
i;jþ1=2 � vn

i;jþ1=2 þ
a�Dt

M
� ri;jþ1 � ri;j

Dy
¼ 0:

8>>>>>>><
>>>>>>>:

ð18Þ
3.4. Construction of discrete well-prepared subspaces

We now construct accurate discrete versions of the well-prepared subspace E (defined with (4)(b) in the continuous case)
for three different meshes. In the sequel, vectors of these discrete subspaces are named discrete incompressible fields. The con-
struction of these discrete subspaces are deduced from three discrete versions of the Hodge decompostion defined in Lemma
2.2 in the continuous case.

3.4.1. The colocated triangular mesh case
Let us suppose that all Ti are triangles arranged so that the computational domain is periodic. Moreover, let us denote by

Vh the standard P1 (first-order polynomial functions) Lagrange finite element space associated with this triangular mesh
Vh :¼ fwh 2 C0ðTdÞ;wh periodic on Td such that 8Ti : ðwhÞjTi
2 P1ðTiÞg: ð19Þ
Let us also denote by Wh the nonconforming Crouzeix–Raviart P1 finite element space [5] associated with this triangular
mesh
Wh :¼ f/h 2 L2ðTdÞ;/h periodic on Td such that 8Ti : ð/hÞjTi
2 P1ðTiÞ and /h is continuous at the edge midpointsg:
Note that since the functions in Vh (resp. Wh) are P1 on each cell, their curls (resp. their gradients) are constant vectors on
each cell. Let us also define the discrete vector subspace
ED
h ¼ q :¼

r

u

� �
2 R3N such that 9ða; b; c;whÞ 2 R3 � Vh such that 8Ti : ri ¼ c and ui ¼

a

b

� �
þ ðr� whÞjTi

� �
:

ð20Þ
Then, adapting the proof of theorem 4.1 in [6] to the case of periodic elements in Vh and Wh, we may prove the following
lemma, where orthogonality is to be understood with respect to the discrete scalar product in R3N , weighted by the areas jTij:

Lemma 3.1
ðED
h Þ
? ¼ q :¼

r

u

� �
2 R3N such that

X
i

jTijri ¼ 0 and 9/h 2Wh such that 8Ti : ui ¼ ðr/hÞjTi

( )
:

� �

In other words, any r

u 2 R3N admits the following orthogonal decomposition
r

u

� �
¼

�r
�uþr� wh

� �
þ

r � �r

r/h

� �
; ð21Þ
with �r ¼
P

ijTijriP
ijTij

; �u ¼
P

ijTijuiP
ijTij

, and where ðwh;/hÞ 2 Vh �Wh.

The first element in the right hand side of (21) defines the orthogonal projection PEDh
q of any q ¼ ðr;uÞT 2 R3N onto ED

h . The
subspace ED

h is a good approximation of E on a triangular mesh since standard approximation results show that the curls of
functions in Vh approach well enough the continuous curls. More precisely, for q :¼ ðr :¼ c; u :¼ ða; bÞT þr� wÞT 2 E, let us
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define the Lagrange interpolation wL
h 2 Vh of w on the triangular mesh. Then, the discretization qh of q 2 E on the triangular

mesh given by
qh :¼
ri

ui

� �
where

ri ¼ c;

ui ¼
a
b

� �
þ ðr� wL

hÞjTi

8<
: ð22Þ
defines a discrete field that belongs to ED
h and that approaches qðBiÞ at the order one in h if w is regular enough, Bi being the

barycenter of the triangular cell Ti.

3.4.2. The colocated cartesian mesh case
Let us now suppose that the computational domain is a rectangle and that the mesh is made up of Nx � Ny rectangles of

constant size Dx� Dy where Nx and Ny are the numbers of cells in the x and y directions. In what follows, we shall suppose
that both Nx and Ny are odd. Indeed, if this is not the case, the situation is a little more involved due to even/odd decoupling
which may produce checkerboard modes. Let us now define the subspace
E�h ¼ q :¼
r

u

 !
2 R3NxNy such that 9ða;b; c; ðwi;jÞÞ 2 R3 �RNxNy such that 8ði; jÞ : ri;j ¼ c and ui;j ¼

a

b

 !
þ

wi;jþ1 �wi;j�1

2Dy

�
wiþ1;j �wi�1;j

2Dx

0
BB@

1
CCA

8>><
>>:

9>>=
>>;:
ð23Þ
In (23), it is implicitly meant that ðwi;jÞ is periodic that is to say:
wi;0 ¼ wi;Ny
wi;Nyþ1 ¼ wi;1 8i 2 ½1;Nx�;
and
w0;j ¼ wNx ;j wNxþ1;j ¼ w1;j 8j 2 ½1;Ny�:
The following lemma holds:

Lemma 3.2
ðE�h Þ
? ¼ q :¼

r

u

� �
2 R3NxNy such that

X
ði;jÞ

ri;j ¼ 0 and 9ð/i;jÞ 2 RNxNy such that ui;j ¼

/iþ1;j � /i�1;j

2Dx
/i;jþ1 � /i;j�1

2Dy

0
BB@

1
CCA

8>><
>>:

9>>=
>>;: ð24Þ
In other words, any
r
u

� �
2 R3NxNy admits the following orthogonal decomposition
r

u

� �
¼

�r
�uþ Cw

� �
þ

r � �r

G/

� �
; ð25Þ
where �r ¼
P
ði;jÞri;j

NxNy
; �u ¼

P
ði;jÞui;j

NxNy
, and where the discrete curl C and the discrete gradient G are defined through
ðCwÞi;j ¼

wi;jþ1 � wi;j�1

2Dy

�
wiþ1;j � wi�1;j

2Dx

0
BB@

1
CCA and ðG/Þi;j ¼

/iþ1;j � /i�1;j

2Dx
/i;jþ1 � /i;j�1

2Dy

0
BB@

1
CCA:
The first element in the right hand side of (25) defines the orthogonal projection PE�h
q of any q ¼ ðr;uÞT 2 R3NxNy onto E�h .

As in the case of the discrete subspace ED
h defined with (20), the discrete subspace E�h is a good approximation of E on a carte-

sian mesh. Indeed, for q :¼ ðr :¼ c; u :¼ ða; bÞT þr� wÞT 2 E, let us define wi;j ¼ wðBi;jÞ where Bi;j is the barycenter of the cell
(i,j). Then, the discretization qh of q 2 E on the cartesian mesh given by
qh :¼
ri;j

ui;j

� �
where

ri;j ¼ c;

ui;j ¼
a

b

� �
þ

wi;jþ1 � wi;j�1

2Dy

�
wiþ1;j � wi�1;j

2Dx

0
BB@

1
CCA

8>>>>><
>>>>>:

ð26Þ
defines a discrete field that belongs to E�h and that approaches qðBi;jÞ at the order two in Dx and Dy.
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3.4.3. The staggered cartesian mesh case
On the cartesian staggered mesh introduced in Section 3.3, the discrete well-prepared subspace is defined with
EMAC;�
h ¼

(
q :¼ r

u

� �
2 R3NxNy such that 9ða; b; c; ðwiþ1=2;jþ1=2ÞÞ 2 R3 � RNxNy

such that 8ði; jÞ : ri;j ¼ c and
uiþ1=2;j

v i;jþ1=2

� �
¼ a

b

� �
þ

wiþ1=2;jþ1=2 � wiþ1=2;j�1=2

Dy

�
wiþ1=2;jþ1=2 � wi�1=2;jþ1=2

Dx

0
BB@

1
CCA
9>>=
>>;; ð27Þ
where Nx and Ny are the number of cells in the two directions of the staggered cartesian mesh. In (27), it is implicitly meant
that u,v and w are periodic that is to say
8i 2 ½1;Nx� :
v i;1=2 ¼ v i;Nyþ1=2;

wiþ1=2;1=2 ¼ wiþ1=2;Nyþ1=2

�

et
8j 2 ½1;Ny� :
u1=2;j ¼ uNxþ1=2;j;

w1=2;jþ1=2 ¼ wNxþ1=2;jþ1=2:

�

The following lemma follows from the work of Nicolaides on the MAC scheme [7,8]:

Lemma 3.3
ðEMAC;�
h Þ? ¼ q :¼ r

u

� �
2R3NxNy such that

X
ði;jÞ

ri;j¼0 and 9ð/i;jÞ 2RNxNy such that 8ði; jÞ : uiþ1=2;j

v i;jþ1=2

� �
¼

/iþ1;j�/i;j

Dx
/i;jþ1�/i;j

Dy

0
BB@

1
CCA

8>><
>>:

9>>=
>>;:

� �

In other words, any r

u 2 R3NxNy admits the following orthogonal decomposition� � � � � �

r
u
¼

�r
�uþ CMACw

þ r � �r
GMAC/

; ð28Þ
where P

�r ¼

P
ði;jÞri;j

NxNy
and �u ¼

ði;jÞuiþ1=2;j

NxNyP
ði;jÞv i;jþ1=2

NxNy

0
BBB@

1
CCCA;
and where the discrete curl CMAC and the discrete gradient GMAC are defined through
ðCMACwÞiþ1=2;j

ðCMACwÞi;jþ1=2

 !
¼

wiþ1=2;jþ1=2 � wiþ1=2;j�1=2

Dy

�
wiþ1=2;jþ1=2 � wi�1=2;jþ1=2

Dx

0
BB@

1
CCA;
and 0 1

ðGMAC/Þiþ1=2;j

ðGMAC/Þi;jþ1=2

 !
¼

/iþ1;j � /i;j

Dx
/i;jþ1 � /i;j

Dy

BB@ CCA:
The first element in the right hand side of (28) defines the orthogonal projection PEMAC;�
h

q of any q ¼ ðr;uÞT 2 R3NxNy onto
EMAC;�

h . The discrete subspace EMAC;�
h is a good approximation of E on a cartesian mesh. Indeed, for q :¼ ðr :¼ c; u :¼

ða; bÞT þr� wÞT 2 E, let us define wiþ1=2;jþ1=2 ¼ wðSiþ1=2;jþ1=2Þ where Siþ1=2;jþ1=2 is the upper right corner of the cell (i,j). Then,
the discretization qh of q 2 E on the cartesian mesh given by
qh :¼
ri;j

uiþ1=2;j

v i;jþ1=2

0
@

1
A where

ri;j ¼ c;

uiþ1=2;j ¼ aþ
wiþ1=2;jþ1=2 � wiþ1=2;j�1=2

Dy
;

v i;jþ1=2 ¼ b�
wiþ1=2;jþ1=2 � wi�1=2;jþ1=2

Dx

8>>>><
>>>>:

ð29Þ
defines a discrete field that belongs to EMAC;�
h and that approaches ðrðBi;jÞ;uðMiþ1=2;jÞ;vðMi;jþ1=2ÞÞT at the order two in Dx and

Dy, where Miþ1=2;j (resp. Mi;jþ1=2) is the midpoint of the vertical right (resp. horizontal upper) boundary of cell (i,j).
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3.5. Numerical results

We now solve linear wave equation (1) with Godunov scheme (16) and with low Mach Godunov scheme (17) on a 2D carte-
sian mesh (of 101 � 101 cells) or on a triangular mesh, and with MAC scheme (18) on a 2D cartesian mesh. Here, we consider
the domain T2 ¼ ½0; 1� � ½0; 1�, we choose a� ¼ 1 in (2) and M ¼ 10�4. We consider the following initial conditions
q0 :¼ ðr0;u0ÞT :
rðt ¼ 0; x; yÞ ¼ 1;

uðt ¼ 0; x; yÞ ¼ 2 sin2ðpxÞ sinð4pyÞ;
vðt ¼ 0; x; yÞ ¼ � sinð2pxÞ sin2ð2pyÞ:

8><
>: ð30Þ
Obviously, setting
wðx; yÞ ¼ 1
p

"
sin2ðpxÞ sin2ð2pyÞ � 1

4

#
;

there holds
u0 ¼ $� w;
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Fig. 1. Godunov scheme on a 101� 101 cartesian mesh: kr?h kðtÞ.
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Fig. 2. Godunov scheme on a 101� 101 cartesian mesh: kr/hkðtÞ.



Fig. 3. Godunov scheme on a 101� 101 cartesian mesh: isolines of r?h ðt=M ¼ 0:15; x; yÞ.

Fig. 4. Godunov scheme on a 101� 101 cartesian mesh: isolines of /hðt=M ¼ 0:15; x; yÞ.
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which means that, at the continuous level, q0 2 E and, thus, that the solution of linear wave equation (1) satisfies
qðt P 0; �Þ ¼ q0ð�Þ for initial condition (30).

Let us now discretize the initial condition q0 on a 2D colocated triangular mesh, on a 2D colocated cartesian mesh and on a
2D staggered cartesian mesh by discretizing q0 2 E respectively through (22) onto ED

h defined by (20), through (26) onto E�h
defined by (23) and through (29) onto EMAC;�

h defined by (27). This defines the discrete initial condition ðq0
hÞ for Godunov

scheme (16) and for low Mach Godunov scheme (17), and the discrete initial condition ðq0
hÞ for MAC scheme (18). We also

define the discrete Hodge decomposition with Phq0
h :¼ PEDh

q0
h in the case of the 2D triangular mesh, with Phq0

h :¼ PE�h
q0

h in
the case of the 2D colocated cartesian mesh and with Phq0

h :¼ PEMAC;�
h

q0
h in the case of the 2D staggered cartesian mesh. Thus,

initial condition q0
h constructed from (30) is such that we have exactly
Phq0
h ¼ q0

h

for each mesh. This equality means that, at the discrete level, the initial condition is well-prepared in the sense of (8).
What we observe numerically is that in all cases, except for the Godunov scheme on the cartesian mesh, the numerical

solutions behave exactly like in the continuous case: they remain unchanged. On the contrary, Figs. 1, 2 show that the numer-
ical solution obtained with the Godunov scheme on the 2D cartesian mesh deviates from its initial value and contains a
component that is in the discrete acoustic subspace ðE�h Þ

? defined by (24). Indeed, defining this spurious component by
ðr?h ;r/hÞ

T :¼ qh � Phqh, we represent on Figs. 1, 2 the quantities kr?h kðt=MÞ and kr/hkðt=MÞ ðt=M 2 ½0; 0:5�Þ. These two
figures show that
kqh � PhqhkðsacÞ ¼ OðDxÞ 	 M; ð31Þ
where sac is of the order of OðMÞ. This estimate is the discrete version of estimate (10) and characterizes the creation of
spurious acoustic waves at low Mach number when the linear wave equation is discretized with a standard Godunov scheme
on a 2D cartesian mesh. We will justify these numerical results in Section 5 with theoretical arguments. Let us note that
Figs. 3, 4 represent the isolines of r?h ðt=M ¼ 0:15; x; yÞ and of /hðt=M ¼ 0:15; x; yÞ. These two figures show that r?h and /h

are deeply related.
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4. Analysis of numerical schemes based on the first-order modified equation

The notion of first-order modified equation has been used in [9] to study the behaviour of the Godunov scheme at low Mach
number applied to linear wave equation (1) on a cartesian mesh of space step Dx supposed to be identical in each direction
for the sake of simplicity. Let us briefly recall this notion of first-order modified equation. When one studies the truncation
error of a numerical scheme on a cartesian mesh through the use of Taylor expansions, one may add the first-order leading
term of the error to the original PDE to obtain the first-order modified equation. For this equation, the scheme approaches the
solution with a better order than for the original PDE. It is for example a well-known fact that the first-order, semi-discrete in
space, upwind scheme applied to the linear transport equation @tuþ a@xu ¼ 0, with a > 0, is a first-order approximation of
that equation, and is a second-order approximation of the first-order modified equation @tuþ a@xu ¼ a

2
Dx@2

xxu.

It was recalled in [9] that the first-order modified equation of semi-discrete in space Godunov scheme (16) and of semi-
discrete in space low Mach Godunov scheme (17) is given by
@tqþ
Lj

M
q ¼ 0; ðaÞ

qðt ¼ 0; xÞ ¼ q0ðxÞ; ðbÞ

8<
: ð32Þ
with
Lj ¼ L�MBj;

Bjq ¼ K

Dr
@2u
@x2

@2v
@y2

0
BBBBB@

1
CCCCCA and K ¼

mr 0 0
0 jmu 0
0 0 jmv

0
B@

1
CA;

8>>>>>>><
>>>>>>>:

ð33Þ
where q :¼ ðr;u;vÞT . In (33), ðmr ; muÞ 2 R3
þðmu :¼ ðmu; mv ÞÞ and mr ¼ mu ¼ mv ¼ mnum :¼ a� Dx

2M (mnum is the numerical viscosity) and
Dr is the Laplacian operator applied to r. The case j ¼ 1 corresponds to the standard ‘‘full” upwind Godunov scheme (16),
and the case j ¼ 0 corresponds to the low Mach Godunov scheme (17) in which the pressure gradient is centered. The 3D
formulation of 2D operator (33) is similar.

4.1. Invariance of the well-prepared subspace E

In what follows, we will say that a subspace is invariant for Eq. (32) if the solution of (32) with an initial condition in that
subspace remains in that subspace for all t > 0. A subspace will be called stationary if the solution of (32) with an initial con-
dition in that subspace remains equal to this initial condition for all t > 0.

In [9], the following lemma was proven (see lemma 4.2 in [9]):

Lemma 4.1. We have:

(1) when X ¼ Td¼1 : 8j, the subspace E is invariant for Eq. (32);
(2) when X ¼ Td2f2;3g, the subspace E is invariant for Eq. (32) if and only if j ¼ 0 (low Mach Godunov scheme). Moreover, E is a

stationary subspace when j ¼ 0.

We deduce from Lemma 4.1 and from the L2 stability ðj P 0Þ of the solution of (32) that
kq� Pqkðt ¼ 0Þ ¼ OðMÞ ) kq� Pqkðt P 0Þ ¼ OðMÞ ð34Þ
in dimension one when j ¼ 1 (Godunov scheme) or when j ¼ 0 (low Mach Godunov scheme) and, in dimension two and
three, only when j ¼ 0 (low Mach Godunov scheme). Moreover, we deduce from point 2 of Lemma 4.1 that, in dimension
two or three, we can write
kq� Pqkðt ¼ 0Þ ¼ OðMÞ does not imply that kq� Pqkðt P 0Þ ¼ OðMÞ ð35Þ
when j ¼ 1 (Godunov scheme). More precisely, when j ¼ 1 (Godunov scheme) and when M � Dx, it is also proven in [9]
(see proposition 4.1 in [9]) by applying a Fourier analysis to (32) that in 2D or 3D, we have
9q0 2 ðL2ðTdÞÞ1þd : kq� Pqkðt ¼ 0Þ ¼ OðMÞ and kq� PqkðsacÞ 	 OðMÞ; ð36Þ
where sac ¼ OðMLX
a�
Þ (sac is an acoustic time scale, LX being a characteristic length of X of order one). Estimate (34) means that

when the initial condition is close to an incompressible flow, the solution qðtÞ of (32) remains close to an incompressible flow
at any time, just like for the linear wave equation (see (9)). Let us note that the acoustic subspace E? is also an invariant sub-
space if and only if j ¼ 0 but this point is not important for the problem studied is this paper (note also that E? is not a sta-
tionary subspace). Estimate (36) – which characterizes the existence of spurious acoustic waves – implies that the pressure
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rðsac; xÞ has an oscillating component of order 1 and, thus, that the pressure pðsac; xÞ has an oscillating component of order M
because of (3) (this corresponds to the creation of the well-known spurious pressure waves of order M [10,11]). It also
implies that the velocity field uðsac; xÞ has a non divergence-free component of order 1. As a consequence, at low Mach num-
ber, Godunov type schemes are accurate in 1D but are inaccurate in 2D or 3D (unless Dx ¼ OðMÞ which is too restrictive for
practical applications). To summarize, the inaccuracy of 2D or 3D (non-linear) Godunov type schemes can be explained when
the mesh is cartesian by the fact that the well-prepared subspace E is not invariant for the linear first-order modified equa-
tion (32). This underlines that, when the mesh is cartesian, this inaccuracy can be explained (at least partly) with linear argu-
ments without the convection and, thus, without the notion of shear waves1, which implies that previous analysis proposed in
[4,10–12,21,22] may be greatly simplified by dropping the convection and the non-linearities (although the papers [4,10–
12,21,22] do not explicitly mention that the convection is responsible for the inaccuracy). Nevertheless, point 2 of Lemma 4.1
shows that we recover the invariance of E when we impose j ¼ 0 in (33). This suggests that if we modify the Godunov type
schemes by using a central difference to discretize the pressure gradient in the compressible Euler system, we obtain a modified
Godunov type scheme that is accurate at low Mach number. Numerical results proposed in [9] justify this assertion. These mod-
ified Godunov type schemes are called low Mach Godunov schemes, and are defined by scheme (17) in the case of linear wave
equation (1). Let us note that this simple modification can be applied to any colocated scheme and on any mesh.

Unfortunately, when the mesh is not cartesian, we cannot apply directly the previous analysis since it is difficult to gen-
eralize the notion of modified equation in that case. Nevertheless, it is possible to also link the accuracy or the inaccuracy of
Godunov scheme (16) or of low Mach Godunov scheme (17) to the structure of the kernel KerLj;h where Lj;h is a discrete ver-
sion of Lj defined by (33) (here and in the sequel, the parameter h is the order of magnitude of the space step of the mesh).
This point of view will be adapted to explain why Godunov scheme (16) is accurate when the mesh is triangular or tetrahedral since
the notion of kernel exists for any type of mesh contrary to the notion of modified equation. Moreover, in the case of a cartesian
mesh, this point of view will be coherent with the analysis proposed in [9] and summarized previously.

Before studying the discrete case, we introduce for didactic reasons this new point of view in the case of first-order mod-
ified Eq. (32) studied at the continuous level.

4.2. Structure of KerLj and time behaviour

Another way to understand the difference between standard Godunov scheme (16) and low Mach Godunov scheme (17) is
to study the structure of the kernel KerLj and to compare the solution2 qjðtÞ of (32) with the solution qðtÞ of linear wave equa-
tion (1) given by (6).

4.2.1. Structure of KerLj

We have the following result (see lemma 4.3 in [9]):

Lemma 4.2. When X ¼ Td¼2, we have3
1 Let
2 For
3 The
KerLj¼1 ¼ q :¼
r

u

� �
2 ðL2ðT2ÞÞ3 such that 9ðc;uðyÞ; vðxÞÞ such that r ¼ c and u ¼

u

v

� �� �
; ð37Þ
which implies that
KerLj¼1ˆE: ð38Þ
Moreover, we have
KerLj¼0 ¼ E: ð39Þ
Relations (37) and (38) show that KerLj¼1 is a very poor subspace of E in two (and three) dimensions. Moreover, the sub-
space KerLj¼1 verifies KerLj¼1 � ðKerLj¼1Þ? ¼ ðL2ðT2ÞÞ1þd. Thus, we can define the orthogonal projection Pj¼1q of any
q 2 ðL2ðT2ÞÞ1þd on the stationary subspace KerLj¼1 of (32). We deduce from Lemma 4.2 that:

Lemma 4.3. When X ¼ Td¼2, the projection Pj¼1 is defined by
8q 2 ðL2ðT2ÞÞ1þd : Pj¼1q ¼

1
jXj

Z
X

rðx; yÞdxdy

1
b1 � a1

Z b1

a1

uðx; yÞdx

1
b2 � a2

Z b2

a2

vðx; yÞdy

0
BBBBBBBB@

1
CCCCCCCCA
:

us underline that in [4] (see p. 362 in [4]), the origin of the inaccuracy is linked to a bad coupling between shear and acoustic waves.
the sake of simplicity, we now omit the spatial dependence in the notations.
result is similar when the space dimension is equal to three.
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Let us underline that (see lemma 4.3 in [9]):
When X ¼ Td¼1 : KerLj2f0; 1g ¼ E: ð40Þ
The difference between (38) and (40) underlines that the behaviour of the Godunov scheme cannot be the same in dimension
one and in dimension two (or three). This point is coherent with Lemma 4.1. Let us underline that (38) and the loss of invari-
ance described in Lemma 4.1 are not identical notions. Indeed:

� strict inclusion (38) underlines that, firstly, the operator Lj – which is a perturbation of the linear operator L – does not
perturb the zero eigenvalue of L and, secondly, ‘‘shrinks” the eigenspace associated to this zero eigenvalue;
� the notion of invariance – which is not restricted to linear operators – is different from the notion of kernel since it does

not suppose the existence of a zero eigenvalue. In a way, it is more general.

4.2.2. Time behaviour
We now study the time behaviour of the solution qjðtÞ of first-order modified Eq. (32) by using the splitting
qjðtÞ ¼ qa
jðtÞ þ qb

jðtÞ: ð41Þ
In (41), qa
jðtÞ is solution of (32) with the initial condition
qa
jðt ¼ 0Þ ¼ Pq0; ð42Þ
and qb
jðtÞ is solution of (32) with the initial condition
qb
jðt ¼ 0Þ ¼ ð1� PÞq0: ð43Þ
Comparing (41) with (6), we may say that if we admit that kqb
jðtÞk ¼ OðMÞwhen the initial condition is well-prepared that is

to say when kq� Pqkðt ¼ 0Þ ¼ OðMÞ (we admit that (32) is well-posed), then qjðtÞ will or will not be a good approximation
of qðtÞ depending on the time behaviour of the quantity qa

jðtÞ � Pq0. The time behaviour of qa
jðtÞ � Pq0 is deeply related to

the structure of KerLj and is described by the following five points:

� Point 1: The quantity kqa
j¼1ðtÞ � Pq0k is at least of order Dx

LX
kð1� Pj¼1ÞPq0k as soon as t is of order

MLX

a�
where LX is a char-

acteristic length of order one which depends only on X.

� Point 2: The quantity kqa
j¼1ðtÞ � Pq0k is at least of order kð1� Pj¼1ÞPq0k as soon as t is of order

ML2
X

a�Dx
.

The proof of points 1 and 2 is given below.

� Point 3: Behaviour of Godunov scheme in dimension two or three (j ¼ 1 and d 2 f2;3g): when the space dimension d is
greater than one, KerLj¼1 is a very poor subspace of E (see (37) and (38)). As a consequence, kð1� Pj¼1ÞPq0k is generally
of order one. Thus, we deduce from previous point 1 that we have generally
kqa
j¼1ðtÞ � Pq0kP OðDxÞ when t ¼ OðMÞ: ð44Þ
Because of this estimate, qj¼1ðtÞ is not a good approximation of qðtÞ. Nevertheless, we cannot deduce directly from (44) esti-
mate (36) that characterizes the creation of spurious acoustic waves in the acoustic subspace E?. Indeed, (36) is stronger than
(44). Nevertheless, knowing that (36) was proven in [9], we can consider (44) as a direct consequence of the creation of spu-
rious acoustic waves. Let us note that q0 in (36) is the one for which kð1� Pj¼1ÞPq0k ¼ Oð1Þ in 2D or in 3D.

� Point 4: Behaviour of low Mach Godunov scheme (j ¼ 0 and d 2 f1;2;3g): relation (39) implies that Pj¼0 ¼ P, which implies
that
8t P 0 : qa
j¼0ðtÞ ¼ Pq0: ð45Þ
But, we have also
kqj¼0ðtÞ � Pqj¼0ðtÞk 6 kqa
j¼0ðtÞ � Pqa

j¼0ðtÞk þ kqb
j¼0ðtÞ � Pqb

j¼0ðtÞk
6 kqa

j¼0ðtÞ � Pqa
j¼0ðtÞk þ kqb

j¼0ðtÞk ðsince kj1� Pkj ¼ 1Þ;
that is to say
kqj¼0ðtÞ � Pqj¼0ðtÞk 6 kqa
j¼0ðtÞ � Pqa

j¼0ðtÞk þ OðMÞ; ð46Þ
when the initial condition is well-prepared in the sense of (8). Then, we deduce estimate (34) from (45) and (46) (since (45)
implies that qa

j¼0ðtÞ ¼ Pqa
j¼0ðtÞ). Thus, qj¼0ðtÞ is a good approximation of qðtÞ and no spurious acoustic waves are created by

the low Mach Godunov scheme.
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� Point 5: Behaviour in dimension one (j 2 f0;1g and d ¼ 1): when the space dimension d is equal to one, relation (40)
implies that Pj2f0;1g ¼ P. Then, (45) and (46) are also verified, and (34) is satisfied. Thus, qj¼0ðtÞ is a good approximation
of qðtÞ and no spurious acoustic waves are created by the Godunov scheme ðj ¼ 1Þ and by the low Mach Godunov scheme
ðj ¼ 0Þ.

Points 3, 4 and 5 are coherent with the results of [9] recalled in Section 4.1. We also deduce from points 2 and 3 that
kqa
j¼1ðtÞ � Pq0kP Oð1Þ when t ¼ O M

Dx

� �
: ð47Þ
This means that the long-time solution of (32) is very far from the exact solution of the original wave equation. More pre-
cisely, we will prove that qa

j¼1ðtÞ tends to Pj¼1Pq0 when t grows (see below Proposition 4.1), Pj¼1Pq0 being generally very
different from Pq0 (see Lemma 4.3). On the other hand, when j ¼ 0 (low Mach Godunov scheme), qa

j¼0ðtÞ remains forever ex-
actly equal to Pq0 (see (45)). Nevertheless, we want to emphasize that the long-time behaviour of qjðtÞ is not really inter-
esting when we are interested in analysing the accuracy of Godunov type schemes applied to the non-linear compressible
Euler system at low Mach number. Indeed, linear wave equation (1) can be seen as a part of the linearization of the non-lin-
ear compressible Euler system at low Mach number [9]. Thus, the velocity field deduced from qjðtÞ gives relevant informa-
tion on the discrete velocity field solution of the discrete non-linear compressible Euler system only on short times of order
OðMÞ.

The proof of above points 1 and 2 is a consequence of the following results:

Proposition 4.1. When j ¼ 1, there exists a constant LX depending only on X such that
8t P 0 : kqa
j¼1ðtÞ � Pj¼1Pq0k 6 kð1� Pj¼1ÞPq0k exp � a�Dx

2ML2
X

t

 !
: ð48Þ
This proposition expresses the fast diffusion of Pq0 towards Pj¼1Pq0 when j ¼ 1. We deduce the following corollary from
Proposition 4.1:
Corollary 4.1. When j ¼ 1, there exists a constant LX depending only on X such that
8t P 0 : kqa
j¼1ðtÞ � Pq0kP 1� exp � a�Dx

2ML2
X

t

 !" #
kð1� Pj¼1ÞPq0k: ð49Þ
As a consequence, we have
8t P
MLX

a�
: kqa

j¼1ðtÞ � Pq0kP
Dx
3LX
kð1� Pj¼1ÞPq0k ð50Þ
for Dx sufficiently small, and
8t P
ML2

X

a�Dx
: kqa

j¼1ðtÞ � Pq0kP 1� 1ffiffiffi
e
p

� �
kð1� Pj¼1ÞPq0k ð51Þ
for any Dx.

The proof of Proposition 4.1 is based on the following lemma:

Lemma 4.4. We have
8t P 0 : Pj¼1ðqa
j¼1ðtÞ � Pj¼1Pq0Þ ¼ 0: ð52Þ
It is also based on this second lemma:
Lemma 4.5. There exists a constant LX depending only on X such that
8t P 0 : kqðtÞk2
6 L2

XðkrrðtÞk2
L2ðXÞ þ k@xuðtÞk2

L2ðXÞ þ k@yvðtÞk2
L2ðXÞÞ ð53Þ
for any function q :¼ ðr;u;vÞT satisfying Pj¼1q ¼ 0.
Proof of Proposition 4.1. Let us define �qj¼1 ¼ qa
j¼1 � Pj¼1Pq0 :¼ ð�rj¼1; �uj¼1ÞT . By multiplying (32)(a) verified by �qj¼1 with

�qj¼1 itself and by integrating over X, we obtain
1
2

d
dt
ðk�qj¼1ðtÞk2Þ ¼ � a�Dx

2M
ðkr�rj¼1ðtÞk2

L2ðXÞ þ k@x�uj¼1ðtÞk2
L2ðXÞ þ k@y �vj¼1ðtÞk2

L2ðXÞÞ: ð54Þ
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Now, through (52) and (53), we obtain
d
dt
ðk�qj¼1ðtÞk2Þ þ a�Dx

ML2
X

k�qj¼1ðtÞk2
6 0:
We obtain (48) by applying Grönwall’s lemma. h
Proof of Corollary 4.1. We have
kqa
jðtÞ � Pq0k ¼ kðqa

jðtÞ � PjPq0Þ � ðPq0 � PjPq0ÞkP kjqa
jðtÞ � PjPq0k � kð1� PjÞPq0kj;
by using the reverse triangle inequality. But, inequality (48) shows that
kð1� Pj¼1ÞPq0kP kqa
j¼1ðtÞ � Pj¼1Pq0k:
Thus, we have also
kqa
j¼1ðtÞ � Pq0kP kð1� Pj¼1ÞPq0k � kqa

j¼1ðtÞ � Pj¼1Pq0k:
We obtain (49) by using again inequality (48). We deduce (50) from (49) by noting that 1� expð�x=2ÞP x=3 for x suffi-
ciently small. In the same way, we deduce (51) from (49) by noting that 1� expð�x=2ÞP 1� expð�1=2Þ for any x P 1. h
Proof of Lemma 4.4. This is easily proven by integration of the first component of (32)(a) over X, by integration of the sec-
ond component of (32)(a) over ½a1; b1� and by integration of the third component of (32)(a) over ½a2; b2�, invoking the peri-
odicity of the domain and the fact that (52) is true at t ¼ 0 by definition. h
Proof of Lemma 4.5. This is easily proven by standard Poincaré–Wirtinger inequalities. h
5. Analysis of Godunov type schemes

When the mesh is triangular or tetrahedral, we cannot apply directly the analysis proposed in Section 4 since it is difficult
to generalize the notion of modified equation when the mesh is not cartesian. Nevertheless, the notion of kernel remains rel-
evant in the discrete case for any mesh type. Thus, to obtain information at the discrete level without the notion of modified
equation, the first point is to define the discrete stationary subspace KerLj;h that is the discrete version of the stationary sub-
space Ker L (we recall that E ¼ KerL), Lj;h being the discrete version of Lj given by (33) (Lj;h will be defined below). We will
see that when the mesh is triangular, KerLj;h is a good approximation of E when the scheme is the Godunov scheme ðj ¼ 1Þ
or the low Mach Godunov scheme ðj ¼ 0Þ. This result justifies the fact that Godunov type schemes are accurate at low Mach
number when the mesh is triangular. Let us note that the results obtained in the sequel in dimension two on a triangular
mesh are also valid in dimension three in the case of a tetrahedral mesh. For the sake of completeness, we will also show
that when the mesh is cartesian, KerLj;h is a good approximation of E only in the case of the low Mach Godunov scheme.

5.1. Link between the accuracy of Godunov type schemes and the structure of KerLj;h

The semi-discrete version of Godunov scheme (16) and of low Mach Godunov scheme (17) applied to the linear wave equa-
tion are given by
dqh

dt
þ Lj;h

M
qh ¼ 0; ð55Þ
with an initial condition qhðt ¼ 0Þ which will be defined later (see (64) below). In (55), we have set qh :¼ r
u

� �
2 R3N and
Lj;h :¼

L1
j;h

..

.

Li
j;h

..

.

LN
j;h

0
BBBBBBBBB@

1
CCCCCCCCCA
;

Li
j;hq :¼ a�

2jTi j

P
Aij�@Ti

jAijj ðri � rjÞ þ ðui þ ujÞ � nij

 �

P
Aij�@Ti

jAijj ðri þ rjÞ þ jðui � ujÞ � nij

 �

nij

 !

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð56Þ
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(N is the number of cells of the mesh). Godunov scheme (16) is defined with (55), (56) and j ¼ 1; low Mach Godunov scheme

(17) is defined with (55), (56) and j ¼ 0. The set KerLj;h is defined as the set of q :¼ r
u

� �
2 R3N

� �
such that
8i 2 f1; . . . ;Ng :

X
Aij�@Ti

jAijj ðri � rjÞ þ ðui þ ujÞ � nij

 �

¼ 0; ðaÞX
Aij�@Ti

jAijj ðri þ rjÞ þ jðui � ujÞ � nij

 �

nij ¼ 0: ðbÞ

8<
: ð57Þ
Of course, KerLj;h is a subspace and we can define its orthogonal ðKerLj;hÞ?. Since R3N is a finite dimension space, we have
KerLj;h � ðKerLj;hÞ? ¼ R3N and we can define the discrete orthogonal projection Pj;h on KerLj;h. The subspace KerLj;h is of
course invariant since it is stationary by construction. By admitting that the energy EðtÞ :¼ kqðtÞk2 (with
kqk2 ¼

P
iðr2

i þ juij2ÞjTij) is a decreasing function for scheme (55), we deduce from the invariance of KerLj;h that
kq0 � Pj;hq0k ¼ OðMÞ ) kqh � Pj;hqhkðt P 0Þ ¼ OðMÞ: ð58Þ
We may think that estimate (58) – that seems to be similar to (34) – implies that Godunov type schemes are accurate at low
Mach number on any mesh. But, we know that this is not the case, at least when the mesh is a 2D or 3D cartesian mesh as it
was underlined with estimate (36). The important point here is that KerLj;h is not always a good approximation of the well-pre-
pared subspace E. As a consequence, Pj;h is not always a good approximation of the Hodge projection P. In that case, estimate
(58) cannot be considered as a discrete version of estimate (34). More precisely, we will prove in the sequel that KerLj;h is a good
approximation of E when the mesh is a triangular mesh for j 2 f0; 1g. Moreover, we will also prove that KerLj;h is a good
approximation of E when the mesh is rectangular if and only if j ¼ 0. At last, let us emphasize that KerLj¼1;h – KerLj¼0;h since
for the Godunov scheme ðj ¼ 1Þ and for the low Mach Godunov scheme ðj ¼ 0Þ, Eq. (57)(b) is respectively defined by
8i 2 f1; . . . ;Ng :
X

Aij�@Ti

jAijj ðri þ rjÞ þ ðui � ujÞ � nij

 �

nij ¼ 0; ð59Þ
and X

8i 2 f1; . . . ;Ng :

Aij�@Ti

jAijjðri þ rjÞnij ¼ 0: ð60Þ
More precisely, we will prove that
on a triangular or tetrahedral mesh : KerLj¼1;h ¼ ED
h � KerLj¼0;h;

on a 1D cartesian mesh : KerLj¼1;h ¼ E�h ¼ KerLj¼0;h;

on a 2D or 3D cartesian mesh : KerLj¼1;hˆE�h ¼ KerLj¼0;h;

8><
>:
where ED
h and E�h – respectively defined by (20) and (23) – are standard discretizations of the continuous well-prepared sub-

space E when the mesh is respectively triangular and cartesian.
In the sequel, we define for the discrete solution qhðtÞ of semi-discrete scheme (55) the splitting
qhðtÞ ¼ qa
j;hðtÞ þ qb

j;hðtÞ: ð61Þ
In (61), qa
j;hðtÞ is solution of (55) with the initial condition
qa
j;hðt ¼ 0Þ ¼ PhðPq0Þh; ð62Þ
and qb
j;hðtÞ is solution of (55) with the initial condition
qb
j;hðt ¼ 0Þ ¼ q0

h � ðPq0Þh; ð63Þ
where Ph :¼ PEDh
;Ph :¼ PE�h

or Ph :¼ PEMAC;�
h

according to mesh type, and where ðq0Þh and ðPq0Þh are accurate approximations
of respectively q0 and Pq0. Relations (61)–(63) are discrete versions of (41)–(43). In the sequel, we suppose that the initial
condition q0 is well-prepared, which implies that kqb

j;hðt ¼ 0Þk ¼ OðMÞ. Let us underline that (62) and (63) imply that the
initial condition qhðt ¼ 0Þ of (55) is given by
qhðt ¼ 0Þ ¼ PhðPq0Þh þ q0
h � ðPq0Þh: ð64Þ
We have defined this initial condition instead of q0
h to be sure that it is a sum of an element of the discrete well-prepared

subspace and of an element of order OðMÞ. And, by stability of the Godunov scheme and of the low Mach Godunov scheme,
we have kqb

j;hðt P 0Þk ¼ OðMÞ. This means that the accuracy of these schemes will be completely determined by the behav-
iour of qa

j;hðtÞ which deeply depends on the structure of KerLj;h.

5.2. The case of triangular meshes

We now study the discrete version of the results proposed in Section 4.2 when the mesh is a 2D triangular mesh, the 3D
tetrahedral case being similar.
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5.2.1. Structure of KerLj;h when the mesh is triangular
The following result holds (the proof is in annex A):

Lemma 5.1. When the mesh is triangular, we have
KerLj¼1;h ¼ ED
h ; ð65Þ
and
KerLj¼0;h  ED
h : ð66Þ
Moreover, any q :¼ ðr;uÞT 2 KerLj¼0;h is such that 9c 2 R such that 8Ti : ri ¼ c.

Equality (65) means that KerLj¼1;h is a good approximation of E. The strict inclusion (66) implies that KerLj¼0;h is rich en-
ough to well approach E: in that sense, we can also say that KerLj¼0;h is a good approximation of E. At last, let us underline
that the fact that the elements Ti are all triangles is essential in the proof of Lemma 5.1; a similar result would not be ob-
tained for other types of elements as we will see in Section 5.3.

5.2.2. Time behaviour when the mesh is triangular
As discussed at the end of Section 5.1, we have kqb

j2f0; 1g;hðt P 0Þk ¼ OðMÞ. Moreover, by construction, we have
qa

j2f0; 1g;hðt P 0Þ ¼ qa
j2f0; 1g;hðt ¼ 0Þ 2 ED

h . In that case, there are no spurious acoustic waves and, thus, there is no condition
on h to avoid the creation of spurious acoustic waves for the Godunov scheme and for the low Mach Godunov scheme. This
theoretical result justifies the numerical results proposed in Section 3.5.

5.3. The case of cartesian meshes

We now study the discrete version of the results proposed in Section 4.2 when the mesh is a 2D cartesian mesh, the 3D
cartesian case being similar. For the sake of simplicity, we suppose, as in Section 3.4.2, that the number of cells Nx and Ny in
each direction are odd. This hypothesis allows us to forget the possible existence of checkerboard modes due to the even/odd
decoupling. Nevertheless, it would be possible to extend the following results when Nx and/or Ny are even.

5.3.1. Structure of KerLj;h when the mesh is cartesian
We have the following result (the proof is in annex A):

Lemma 5.2. When X ¼ Td¼2 and when the mesh is cartesian, we have
KerLj¼1;h ¼ q :¼
r

u

� �
2 R3NxNy such that 9ðc; ðujÞ; ðv iÞÞ 2 R�RNy �RNx such that 8ði; jÞ : ri;j ¼ c and ui;j ¼

uj

v i

� �� �
;

ð67Þ
which implies that
KerLj¼1;hˆE�h : ð68Þ
Moreover, we have
KerLj¼0;h ¼ E�h : ð69Þ
Relations (67) and (68) show that the subspace KerLj¼1;h is a very poor subspace of E. Indeed, the subspace defined with (67)
is unable to approach all divergence-free continuous functions. On the other hand, (69) show that KerLj¼0;h is rich enough to
approach all divergence-free continuous functions. In other words, KerLj¼0;h is a good approximation of E. These results are
coherent with those obtained in Section 4.2, Lemma 5.2 being the discrete version of Lemma 4.2.

Let us note that when Nx or Ny are even, we only have KerLj¼0;h  E�h . This difference between KerLj¼0;h and E�h is linked to
the existence of checkerboard modes. Of course, since they belong to the kernel of the low Mach number Godunov scheme,
they do not grow up with time (see [23] for a study of these checkerboard modes in the 1D case).

5.3.2. Time behaviour when the mesh is cartesian
We now study the time behaviour of the solution qhðtÞ of semi-discrete scheme (55) when the mesh is cartesian.

� The case of the Godunov scheme (j = 1) on a cartesian mesh:

For the sake of simplicity, we now suppose that Dx ¼ Dy :¼ h. We reach the same conclusions as in the analysis conducted
with the first-order modified equation in Section 4.2.2. More precisely, let us define
q̂0
h :¼ PhðPq0Þh:
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The vector q̂0
h belongs to E�h (since Ph :¼ PE�h

) and defines the initial condition of qa
j¼1;hðtÞ solution of (55) (see the discussion

at the end of Section 5.1). Let us underline that q̂0
h is close to ðPq0Þh. The fact that q̂0

h � Pj¼1;hq̂0
h is in general of order one (be-

cause of strict inclusion (68)) leads to the fact that
kqa
j¼1;hðtÞ � q̂0

hkP OðhÞ when t ¼ OðMÞ: ð70Þ
Estimate (70) is a discrete version of estimate (44). As in the case of first-order modified equation (32) studied at the con-
tinuous level (see point 3 in Section 4.2.2), we cannot deduce directly from (70) a discrete version of estimate (36) that would
characterizes the creation of discrete spurious acoustic waves in the discrete acoustic subspace ðE�h Þ

?. Indeed, any discrete
version of (36) would be stronger than (70). Nevertheless, knowing that (36) was proven at the continuous level in [9] in the
case of first-order modified equation, we may consider (70) as a direct consequence of the creation of discrete spurious
acoustic waves. Let us note that (36) is experimentally justified in Section 3.5. As a consequence, the constraint on the mesh
to avoid the creation of spurious acoustic waves of order one within a time of order OðMÞ should be
h ¼ OðMÞ ð71Þ
for the Godunov scheme in the cartesian case which is too restrictive for practical applications. Moreover, we also obtain that
kqa
j¼1;hðtÞ � q̂0

hkP Oð1Þ when t ¼ O M
Dx

� �
; ð72Þ
which is a direct consequence of the fast diffusion of q̂0
h toward Pj¼1;hq̂0

h when t grows (see Proposition 5.1 below). Estimate
(72) is a discrete version of estimate (47). Figs. 5 and 6 confirm this fast diffusion for the velocity field u on a 2D cartesian
mesh of 51 � 51 cells in the case of the numerical test-case proposed in Section 3.5. Indeed, Fig. 5 represents isolines of
wi;jðt ¼ 20 MÞ where wi;j is deduced from discrete projection (25) of qhðt ¼ 20 MÞ onto E�h ; and Fig. 6 represents isolines of
wthðx; yÞ :¼ � 1

4p ½cosð2pxÞ þ cosð4pyÞ� which is deduced from the projection of initial condition (30) onto KerLj¼1 defined
by (37). Indeed, from Lemma 4.3, the velocity component of this projection is given by sinð4pyÞ;ð
� 1

2 sinð2pxÞÞT ¼ r� wth. On the other hand, Figs. 1 and 2 in Section 3.5 show that the projection of qh onto ðE�h Þ
? converges

toward zero when t grows. Thus, Figs. 1, 2 and 5, 6 show that qh converge toward Pj¼1;hq̂0
h whenqhðt ¼ 0Þ ¼ q̂0

h.
Fig. 5. Isolines of wi;jðt ¼ 20 MÞ. Godunov scheme on a 51� 51 cartesian mesh.

Fig. 6. Isolines of wthðx; yÞ. Theoretical result on a 51� 51 cartesian mesh.
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In order to prove (70) and (72), we use discrete versions of Lemma 4.3, of Proposition 4.1 and of Corollary 4.1. The discrete
version of Lemma 4.3 is given by:

Lemma 5.3. When X ¼ Td¼2 and when the mesh is cartesian, the projection Pj¼1;h is defined by
ðPj¼1;hqhÞi;j ¼

1
NxNy

X
k;‘

ðrhÞk;‘

1
Nx

X
k

ðuhÞk;j

1
Ny

X
‘

ðvhÞi;‘

0
BBBBBBBB@

1
CCCCCCCCA
:

Lemma 5.3 written in 1D ðd ¼ 1Þ or in 3D ðd ¼ 3Þ is similar. The discrete version of Proposition 4.1 is given by:
Proposition 5.1. When j ¼ 1, there exists a constant LX depending only on X such that
8t P 0 : kqa
j¼1;hðtÞ � Pj¼1;hq̂0

hk 6 kð1� Pj¼1;hÞq̂0
hk exp � a�h

2ML2
X

t

 !
: ð73Þ
And, from this proposition, we easily obtain a discrete version of Corollary 4.1 that allows to obtain estimates (70) and
(72).

� The case of the low Mach Godunov scheme (j = 0) on a cartesian mesh:

As discussed at the end of Section 5.1, we have kqb
j;hðt P 0Þk ¼ OðMÞ. Moreover, by construction, we have

qa
j;hðt P 0Þ ¼ qa

j;hðt ¼ 0Þ 2 E�h (we recall that KerLj¼0;h ¼ E�h ). In that case, there are no spurious acoustic waves and, thus,
there is no condition on h to avoid the creation of spurious acoustic waves. This theoretical result justifies the numerical re-
sults proposed in Section 3.5.

The proof of Proposition 5.1 uses discrete versions of Lemmas 4.4 and 4.5. The discrete version of Lemma 4.4 is given by:

Lemma 5.4. We have
8t P 0 : Pj¼1;hðqa
j¼1;hðtÞ � Pj¼1;hq̂0

hÞ ¼ 0: ð74Þ

Before we turn to the next lemma, we need definitions of discrete differential operators. Let uh ¼ ðui;jÞ be in RNxNy , we

define @x;huh by
8ði; jÞ 2 ½0; Nx� � ½1; Ny� : ð@x;huhÞiþ1=2;j :¼ uiþ1;j � ui;j

Dx
: ð75Þ
Let vh ¼ ðv i;jÞ be in RNxNy , we define @y;hvh by
8ði; jÞ 2 ½1; Nx� � ½0; Ny� : ð@y;hvhÞi;jþ1=2 :¼ v i;jþ1 � v i;j

Dy
: ð76Þ
Let rh ¼ ðri;jÞ be in RNxNy . We define rhrh by
8ði; jÞ 2 ½0; Nx� � ½1; Ny� : ðrhrhÞiþ1=2;j :¼ ð@x;hrhÞiþ1=2;j; ðaÞ
8ði; jÞ 2 ½1; Nx� � ½0; Ny� : ðrhrhÞi;jþ1=2 :¼ ð@y;hrhÞi;jþ1=2: ðbÞ

(
ð77Þ
In (75), it is meant, by periodicity of the domain, that u0;j ¼ uNx ;j and uNxþ1;j ¼ u1;j. The same kind of convention is used in
(77)(a). In the same way, it is meant in (76) that v i;0 ¼ v i;Ny and v i;Nyþ1 ¼ v i;1, and the same convention is used in (77)(b).
The discrete version of Lemma 4.5 is given by:

Lemma 5.5. There exists a constant LX depending only on X such that
8t P 0 : kqhðtÞk
2
6 L2

X krhrhðtÞk2
L2ðXÞ þ k@x;huhðtÞk2

L2ðXÞ þ k@y;hvhðtÞk2
L2ðXÞ

� �
ð78Þ
for any function qh satisfying Pj¼1;hqh ¼ 0.
Proof of Proposition 5.1. Let us define �qj¼1;h ¼ qa
j¼1;h � Pj¼1q̂0

h :¼ ð�rj¼1;h; �uj¼1;hÞT . By multiplying (55) verified by �qj¼1;h with
�qj¼1;h itself and by performing discrete integrations, we obtain
1
2

d
dt
ðk�qj¼1;hðtÞk2Þ ¼ � a�h

2M
krh�rj¼1;hðtÞk2

L2ðXÞ þ k@x;h�uj¼1;hðtÞk2
L2ðXÞ þ k@y;h �vj¼1;hðtÞk2

L2ðXÞ

� �
:
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Now, through (74) and (78), we obtain
d
dt
ðk�qj¼1;hðtÞk2Þ þ a�h

ML2
X

k�qj¼1;hðtÞk2
6 0:
We conclude, like in the proof of Proposition 4.1, by using Grönwall’s lemma. h
Proof of Lemma 5.4. This is easily proven by summation of the first component of (55) over ðk; ‘Þ 2 ½1; Nx� � ½1; Ny�, by sum-
mation of the second component of (55) over k 2 ½1; Nx� and by summation of the third component of (55) over ‘ 2 ½1; Ny�,
invoking the periodicity of the domain, the conservativity of the scheme and the fact that (74) is true at t ¼ 0 by
definition. h
Proof of Lemma 5.5. We obtain the result by using a discrete Poincaré–Wirtinger inequality [24]. h
5.4. The monodimensional case

In the 1D case, the discrete well-prepared subspace E�h (given in 2D by (23)) is defined by
E�h ¼ q :¼
r

u

� �
2 R2Nx such that 9ða; bÞ 2 R2 such that 8i : ri ¼ a and ui ¼ b

� �
(Nx is the number of cells supposed to be odd for the sake of simplicity) and Lemma 5.2 is replaced by:

Lemma 5.6. When X ¼ Td¼1, we have
KerLj¼1 ¼ E�h : ð79Þ
Moreover, we have
KerLj¼0;h ¼ E�h : ð80Þ
Here, the important point is that (79) is completely different from (68) (nevertheless, (80) is identical to (69)). Thus, this lem-
ma underlines that the Godunov scheme (and the low Mach Godunov scheme as we already known) do not suffer of any inac-
curacy at low Mach number, which is coherent with estimate (34) obtained in [9] by studying at the continuous level first-
order modified equation (32).
6. Analysis of the MAC scheme

We now show that the point of view proposed in Section 5 is compatible with the fact that a MAC type scheme [26] is
adapted to solve the compressible Euler or Navier–Stokes system at low Mach number. We recall that the MAC scheme ap-
plied to linear wave equation (1) is given by (18). In that case, the discrete linear operator Lh is defined by
Lh :¼

L1;1
h

..

.

L
i;j
h

..

.

L
Nx ;Ny

h

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; L

i;j
h q :¼ a�

uiþ1=2;j � ui�1=2;j

Dx
þ v i;jþ1=2 � v i;j�1=2

Dy
riþ1;j � ri;j

Dx
ri;jþ1 � ri;j

Dy

0
BBBBBB@

1
CCCCCCA
:

8>>>>>>>>>><
>>>>>>>>>>:

ð81Þ
We can prove that the kernel of Lh is now given by
KerLh ¼ EMAC;�
h ; ð82Þ
where EMAC;�
h is defined by (27). Thus, the behaviour of the MAC scheme on a cartesian mesh is identical to the one of the

Godunov scheme ðj ¼ 1Þ on a triangular mesh (see (65)) or to the one of the low Mach Godunov scheme ðj ¼ 0Þ on a trian-
gular mesh (see (66)) or on a cartesian mesh (see (69)). In that case, there are no spurious acoustic waves and, thus, there is
no condition on h to avoid the creation of spurious acoustic waves. This theoretical result justifies the numerical results pro-
posed in Section 3.5. Let us underline that there are no checkerboard modes in the case of the MAC scheme, which is not the
case for the low Mach Godunov scheme when Nx or Ny are even (see [23] in the 1D case).
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7. Link with the asymptotic analysis

The analysis of discretized compressible Euler system at low Mach number is often performed through a formal asymp-
totic analysis in powers of M [10,13,21,22]. In the case of numerical scheme (55), if we set
qn
i ¼ q0;n

i þMq1;n
i þ � � � ; ð83Þ
then, the development of (55) in powers of M formally yields that the set ðq0;n
i Þ belongs to KerLj;h at each time tn, while, in

the continuous linear wave equation (1), the Oð1Þ term of the development belongs to E. But, we have shown in Section 5
that
on a triangular or tetrahedral mesh : KerLj¼1;h ¼ ED
h � KerLj¼0;h; ðaÞ

on a 1D cartesian mesh : KerLj¼1;h ¼ E�h ¼ KerLj¼0;h; ðbÞ
on a 2D or 3D cartesian mesh : KerLj¼1;hˆE�h ¼ KerLj¼0;h; ðcÞ

8><
>: ð84Þ
where ED
h and E�h – respectively defined by (20) and (23) – are standard discretizations of the continuous well-prepared sub-

space E when the mesh is respectively triangular and cartesian. Then, ðq0;n
i Þ 2 KerLj;h implies that
8i : r0;n
i ¼ c that is to say 8i : rn

i ¼ c þOðMÞ ð85Þ
for any mesh type ((85) is a direct consequence of (89); see annex A). Nevertheless, (85) is not sufficient to prove that numer-
ical scheme (55) is or is not accurate at low Mach number. Indeed, a necessary condition for the numerical asymptotic devel-
opment of q to be a good approximation of the continuous one is that KerLj;h approaches E well enough, which is only
verified when the mesh is triangular (or tetrahedral) or 1D cartesian in the case of the Godunov scheme ðj ¼ 1Þ and when
the mesh is triangular (or tetrahedral) as well as cartesian in the case of the low Mach Godunov scheme ðj ¼ 0Þ because of
(84). Let us underline that these remarks concern also MAC scheme (18) whose behaviour is identical to the one of the
low Mach Godunov scheme on a cartesian mesh (compare (82) and (84)(c) with j ¼ 0).

8. Conclusion

In this article, we have studied the behaviour of the Godunov scheme, of the low Mach Godunov scheme [9] and of the
MAC scheme applied to the linear wave equation in order to study the behaviour of these schemes applied to the resolu-
tion of the compressible Euler or Navier–Stokes system at low Mach number over short (i.e. acoustic) time scales. We have
enlightened the influence of the cell geometry on the accuracy of these schemes. In the triangular or tetrahedral case and
in the 1D cartesian case, the stationary space of the Godunov scheme approaches well enough the continuous space of
constant pressure and divergence-free velocity, while this is not the case in the 2D or 3D cartesian case. In the triangular
or tetrahedral case and in the 1D, 2D or 3D cartesian case, the stationary space of the low Mach Godunov scheme ap-
proaches well enough the continuous space of constant pressure and divergence-free velocity. In the 1D, 2D or 3D carte-
sian case, the stationary space of the MAC scheme approaches well enough the continuous space of constant pressure and
divergence-free velocity. As a consequence, it is easy to construct a discrete constant pressure and divergence-free velocity
initial condition in such a way there is no discrete spurious acoustic waves for the Godunov scheme and for the low Mach
Godunov scheme in the triangular or tetrahedral case, this remark being also valid for the low Mach Godunov scheme and for
the MAC scheme in the 1D, 2D or 3D cartesian case and for the Godunov scheme only in the 1D cartesian case. As a con-
sequence, for flows in the low Mach regime, the fast diffusion of the initial condition to its projection in the stationary
space of the scheme has a dramatic effect on the accuracy of the Godunov scheme in the 2D or 3D cartesian case (but
not in the 1D cartesian case), since it creates a spurious acoustic wave of order Dx within a time of order M. On the con-
trary, at low Mach number, the Godunov scheme and the low Mach Godunov scheme remain accurate in the triangular or
tetrahedral case, the Godunov scheme remains accurate in the 1D cartesian case, the low Mach Godunov scheme and the
MAC scheme remain accurate in the 1D, 2D or 3D cartesian case. Note that these conclusions are only valid when the
boundary conditions are periodic: non-periodic boundary conditions may require additional analysis that was not per-
formed in the present work.

Appendix A. Proof of Lemmas 5.1 and 5.2

We first start with calculations that are common to both lemmas. Let us consider qh :¼ ðri;uiÞT 2 KerLj;h, i.e. verifying (57).
Let us multiply (57)(a) by ri and (57)(b) by ui and add the resulting equalities over i. Then, we have
X

i

X
Aij�@Ti

jAijj½riðri � rjÞ þ riðui þ ujÞ � nij� ¼ 0; ðaÞ

X
i

X
Aij�@Ti

jAijj½ðri þ rjÞ þ jðui � ujÞ � nij�ðui � nijÞ ¼ 0: ðbÞ

8>>><
>>>:

ð86Þ
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Since for all i we have
X

Aij�@Ti
jAijjnij ¼ 0 (which is valid for any type of mesh), we also have
8i 2 f1; . . . ;Ng :
X

Aij�@Ti

jAijjriui � nij ¼ riui �
X

Aij�@Ti

jAijjnij

0
@

1
A ¼ 0:
By injecting this relation into (86), we obtain
X
i

X
Aij�@Ti

jAijj½riðri � rjÞ þ riuj � nij� ¼ 0; ðaÞ

X
i

X
Aij�@Ti

jAijj½rj þ jðui � ujÞ � nij�ðui � nijÞ ¼ 0: ðbÞ

8>>><
>>>:

ð87Þ
Now, we rewrite the sums (87)(a) and (b) as sums over the edges Aij. In these two sums, each individual Aij contributes twice:
once when the considered triangle is Ti, and once when it is Tj, for which we have to exchange the roles of i and j in the cor-
responding contribution. This results in the fact that (87) is equivalent to
X

Aij

jAijjf½riðri � rjÞ þ rjðrj � riÞ� þ riuj � nij þ rjui � njig ¼ 0;

X
Aij

jAijjfrjui � nij þ riuj � nji þ jðui � ujÞ � nijðui � nijÞ þ jðuj � uiÞ � njiðuj � njiÞg ¼ 0:

8>>><
>>>:
Adding these two equalities and noting that nji ¼ �nij, we finally obtain
X
Aij

jAijjfðri � rjÞ2 þ j½ðui � ujÞ � nij�2g ¼ 0: ð88Þ
This leads to the fact that there exists a constant c 2 R such that
8i : ri ¼ c for any j 2 f0; 1g ð89Þ
which means that r is a constant over the whole domain. Let us underline that (88) – and, thus, (89) – is verified for any mesh
type. Let us now suppose that j ¼ 1. We also deduce from (88) that we have
8i : ðui � ujÞ � nij ¼ 0 when j ¼ 1 ð90Þ
for all couples (i,j) such that Ti and Tj are neighboring cells: thus, the normal component of u is conserved through the edges
@Ti \ @Tj when j ¼ 1. As for (89), let us underline that (90) is verified for any mesh type.

Proof of Lemma 5.1. We now specialize to the triangular case. We use the following lemma whose proof is in annex
Appendix B.

Lemma A.1. Let us suppose that the mesh is triangular. Then the fact that
9ðuiÞ such that ui � nij ¼ �uj � nji for all neighboring Ti and Tj ð91Þ
is equivalent to the fact that
9ðuijÞ such that

X
Aij�@Ti

jAijjuij ¼ 0 for all Ti; ðaÞ

uij ¼ �uji for all neighboring Ti and Tj: ðbÞ

8<
: ð92Þ
Moreover, we have
uij ¼ ui � nij:
The important point is that (92) is equivalent to write that either there exists a constant vector ða; bÞT such that ui ¼ ða; bÞT

for all i 2 f1; . . . ;Ng and uij ¼ ui � nij, either there exists a set of real-valued ðwkÞ defined at the vertices Sk of the triangles such
that if Sk1 and Sk2 are two consecutive vertices of Ti (with respect to the positive orientation) and if ij is the subscript of the
edge whose vertices are Sk1 and Sk2, then
uij ¼
wk2 � wk1

jAijj
: ð93Þ
The fact that a set uij defined by (93) verifies (92) is obvious; the fact that this is the only possible representation, besides
constant vectors ða; bÞT , may be inferred, for example, from the adaptation to the periodic case of the works of Nicolaides
on covolume schemes [7]. Now, the set of values ðwkÞ associated to the vertices Sk defines a function wh in Vh defined by
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(19). It can be checked that the exterior normal component of the curl of this function on the edge Aij is exactly the expres-
sion in the right hand side of (93), which itself proves that ui ¼ ðr� whÞjTi

. Finally, by using (89) and Lemma A.1, we obtain
that any qh :¼ ðri;uiÞT 2 KerLj¼1;h is such that
8i : ri ¼ c and ui ¼ ða; bÞT þ ðr� whÞjTi
;

which exactly means that KerLj¼1;h is equal to ED
h defined by (20). On the other side, any function of ED

h satisfies also (88) with
j ¼ 0 – and, thus, satisfies (89) – but does not necessarily satisfy (91). This proves that KerLj¼0;h  ED

h . h
Proof of Lemma 5.2. We now specialize to the cartesian rectangular case. Let us consider q :¼ ðr;uÞT 2 KerLj;h. When j ¼ 1,
the conservation of the normal component of u through the common vertical edge of the cells ði; jÞ and ðiþ 1; jÞ yields that
ui;j ¼ uiþ1;j. Since this is true for all ði; jÞ, we have that for all j 2 ½1; Ny�, there exists a constant uj such that
8i 2 ½1; Nx� : ui;j ¼ uj:
In the same way, the conservation of the normal component of u through the common horizontal edge of the cells ði; jÞ and
ði; jþ 1Þ yields that v i;j ¼ v i;jþ1. Since this is true for all ði; jÞ, we have that for all i 2 ½1; Nx�, there exists a constant v i such that
8j 2 ½1; Ny� : v i;j ¼ v i:
Knowing that (89) is verified, this proves that KerLj¼1;h is given by (67). Let us now choose j ¼ 0. By using again (89), we
obtain that (57)(a) is equivalent to
Dy ðuiþ1;j þ ui;jÞ � ðui;j þ ui�1;jÞ

 �

þ Dx ðv i;jþ1 þ v i;jÞ � ðv i;j þ v i;j�1Þ

 �

¼ 0;
which may be reformulated as
8ði; jÞ 2 ½1; Nx� � ½1; Ny� :
1

2Dx
ðuiþ1;j � ui�1;jÞ þ

1
2Dy
ðv i;jþ1 � v i;j�1Þ ¼ 0: ð94Þ
Conversely, each set ðri;j;ui;j;v i;jÞ satisfying ri;j ¼ c and (94) verifies (57) when j ¼ 0, that is to say belongs to KerLj¼0;h. Now,
(94) tells that the discrete divergence of the velocity vanishes on the cells of a mesh of size 2Dx� 2Dy with normal velocities
on the edges of that mesh: see Fig. 7 (there are actually four overlapping such ‘‘Marker and Cell” meshes that cover the ori-
ginal mesh). It is easily checked that the space of velocities that verify (94) contains velocities that are such that there exists
values a; b; ðwi;jÞ such that
8ði; jÞ 2 ½1; Nx� � ½1; Ny� : ui;j ¼ aþ
wi;jþ1 � wi;j�1

2Dy
and v i;j ¼ b�

wiþ1;j � wi�1;j

2Dx
; ð95Þ
which means that the invariant set ui;j contains discrete curls and that this space is rich enough to discretize properly con-
tinuous divergence-free velocities. The fact that (95) is the only possible representation of velocities verifying (94) may be
inferred from an adaptation of the works of Nicolaides [7] to the periodic cartesian case with odd Nx and Ny. Thus, in this
case, we exactly have that KerLj¼0;h ¼ E�h . h
i j+1v

    i−1 j−u

   i j−1−v
 i+1 ju(i,j)

Fig. 7. MAC mesh of size 2Dx� 2Dy.
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Appendix B. Proof of Lemma A.1

Let us suppose that ðuiÞ satisfies (91). By defining uij with uij :¼ ui � nij and by using the relation
P

Aij�@Ti
jAijjnij ¼ 0 (which is

valid for any type of mesh), we immediately obtain (92)(a). Moreover, (91) implies of course (92)(b). Let us now suppose that
(92) is verified and let Ti be a non-degenerated triangle with three edges Aij1 ;Aij2 and Aij3 , and let nij1 ;nij2 and nij3 be the asso-
ciated unit normal vectors exterior to Ti. Since the triangle Ti is non-degenerated, the system
ui � nij1 ¼ uij1 ;

ui � nij2 ¼ uij2

�

allows to define a unique ui. Because of (92)(a), we have for this triangle Ti
jAij1 jui � nij1 þ jAij2 jui � nij2 þ jAij3 juij3 ¼ 0;
that is to say
ui � ðjAij1 jnij1 þ jAij2 jnij2 Þ þ jAij3 juij3 ¼ 0:
But, we know that we have for any type of mesh ui �
X

Aij�@Ti
jAijjnij ¼ 0. Thus, in our case, we have
jAij3 jðui � nij3 � uij3 Þ ¼ 0;
that is to say ui � nij3 ¼ uij3 . Thus, for any j 2 fj1; j2; j3g, we have ui � nij ¼ uij. Since this is true for any triangle Ti of the trian-
gular mesh, we can construct ðuiÞ in such a way that ui � nij ¼ uij for any Ti. We conclude by noting that (92)(b) coupled to
ui � nij ¼ uij implies that ui � nij ¼ �uj � nji.
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